
Interim Contractor Report #32 (Final)
6/01/99 - 6/30/99

Physics of Boundaries and Their Interactions in Space Plasmas

Dr. Nojan Omidi

Dr. Homayoun Karimabadi
Dr. Dietmar Krauss-Varban

SciberNet, Inc.

5414 Oberlin Drive, Suite 251

San Diego, CA 92121



Highlights of Work

In the following, we provide a summary of our most significant research accomplishments

resulting from this contract. ' For the sake of brevity, most of the projects are explained in a

paragraph length, highlighting only pertinent results.

Magnetopause

It is well known that the magnetopause plays a central role in the energy and particle transfer of

the shocked solar wind into the magnetosphere. One of the primary processes mediating this

interaction is that of dayside reconnection. In addition, viscous coupling via wave-particle

processes (e.g., Kelvin-Helmholtz instability, KH) is an alternative means of energy exchange and

mixing between the magnetosheath and magnetospheric plasmas. Our objective was to study these

processes as they occur during southward IMF, and how they modify the structure of the

magnetopause and its boundary layer(s).

First, we addressed the fundamental question of how reconnection takes place at the kinetic level.
While almost all resistive MHD and ion-kinetic models assume that the tearing instability

underlies magnetopause reconnection, theories of tearing predicted very small saturation

amplitudes, making it very unlikely. Using 2-D, high-resolution full-particle simulations, we
studied the evolution of the magnetopause current layer as a function of rotation of the magnetic

field. We found that the tearing mode, even for field configurations far from being antiparallel, has

fast growth rates and saturates at sufficiently large amplitudes to account for the formation of flux
transfer events (FTEs) in the magnetopause. We also developed a new nonlinear theory for the

saturation of the tearing mode that correctly predicts the amplitudes seen in the simulations.

Having thus established a good footing for the standard assumption in ion-kinetic (hybrid)
simulations, that the tearing instability underlies the reconnection process and the formation of

plasmoids (FTEs), we proceeded to investigate the magnetopause with a variety of 2-D and 3-D
simulations. At the local level, we established that KH instability is much more important, and

more intimately tied to reconnection, than previously thought. We found that the drift between

current-carrying ion species and ions of the surrounding sheath and magnetosphere will make the
current sheet unstable to KH in a large range of circumstances. In contrast to conventional KH

instability, which is driven by the sheath flow, this new instability also operates close to the
subsolar point. The significance of this type of KH is that it sets a lower limit on the

magnetosheath thickness, strongly interacts with tearing (allowing for more flux to connect), and
leads to significant enhancements of the plasmoid core field.

In general, flux ropes are 3-D structures, and as part of the large-scale reconnection configuration,

require inflow/outflow simulations. We have summarized some of our results in Plate I. These
simulations employ the kinetic equivalent of the open, floating boundary conditions. Any inflow
or outflow is self-consistently generated by the reconnection process and is not imposed from the
outside. Plate I shows a flux transfer event (FTE) formed on the magnetosheath side at two

different view angles. In both cases, the magnetosheath is on the left and the magnetosphere is on

the right. Such FTEs manifest themselves as bubbles (depressions) on the magnetosheath

(magnetospheric) side of the surface of the magnetopause. While regardless of the size of the

guide field, the plasmoid bulges almost entirely into the magnetosheath (due to the strong B field
in the magnetosphere), it is only for a finite guide field that the plasmoid detaches to form a

fluxrope. We also note from the simulations that in the presence of a finite guide field,
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Plate I. Formation of a magnetosheath FTE in a 3-D hybrid simulation of the unagnetopause. A flux rope inilially appears as a blister

or a bubble on Ihe surface of the magnetopause but unlike a plasunoid, il detaches from lhis surface. This effect is demonstrated

through two viewing angles of an isosurface of IB?, where y is in the direction of the main component of the field.

3-D effects cause the reconnection process to be cut-off temporarily, leading to intermittent

reconnection. We are currently investigating whether this intermittence can explain the observed

occurrence rates and sizes of FTEs. Finally, the strong coupling between the guide field and the

Hall-induced field results in a fluxrope structure with very large core fields and can explain the

ubiquitous observations of such high fields in FTEs. This is in spite of the high plasma beta of the

magnetosheath which acts to suppress the core field generation.

We have also investigated the structure of the magnetopause during periods of southward IMF

using planar and curved geometries in 2-D hybrid simulations. In the planar geometry, the

structure of the magnetopause during steady reconnection (i.e., a single X line) was investigated.

The results showed a structure consisting of multiple discontinuities/boundaries, none of which

could be matched with a classical fluid discontinuity such as a rotational discontinuity. The causes

and degree of prevalence of such structures is under investigation. Similar results where also

observed in the curved geometry where multiple X lines and plasmoids with varying sizes were
formed. In this case, however, the lack of the usual discontinuities could be attributed to the

presence of multiple plasmoids at the magnetopause which result in a magnetic field topology

quite different from that of a single X-line reconnection. The presence of plasmoids also gives rise

to a considerable variation in magnetopause thickness as a function of latitude. This variation was

found not to be symmetric with respect to the magnetic equator nor was it found to be a

monotonically increasing or decreasing function of magnetic latitude.



Magnetotail

In addition to research that directly addresses the energy release processes during substorms, the

question of the overall structure and dynamics of the magnetotail is an important research topic.

Some of the outstanding issues that we addressed were in regards to the formation of the

plasmasheet boundary layer (PSBL) and the population of the central plasma sheet (CPS). Slow
shocks, which may bound the reconnection region, are the prime mechanism for plasma entry into

the CPS, energization of ions, and formation of ion beams.
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Plate 2. Left panel: Isosurface of the main field componenl B, at 112 of its lobe value in our 3-D tail sinmlation, showing the

modulation of the current sheet due to reconection and KH. Top right panel: associated ohmic heating in the ionosphere. Bottom right

panels: y-z cuts of the cross-tail current Jr and the parallel current, at x = 12 R_. The current is diverted around the thickening CPS and

only parlially converted into j_ (plot intensity scale factor: I0) at the PSBL.

Over the past several years we have completed a substantial amount of work documenting the

physics of slow shocks. Based on this work, slow shocks in the tail are expected to have a
relatively large dissipation scale length of many tens to a few hundred of ion inertial lengths, and

should be accompanied by backstreaming ions that generate Alfven waves. Slow shocks with just

these characteristics have recently been observed by GEOTAIL. We found that ion thermalization

at large shock normal angles is difficult to achieve due to the finite size of the CPS. As a

consequence, ion distributions will typically be far from Maxwellian and can account for some of
the observations of the crossing from the PSBL to the CPS. Kinetic effects and anisotropies also

have a large impact on the phase velocities of low frequency modes and the ensuing ordering of



thediscontinuitiesin theflow. Oneof themoreexcitingpossibilitiesresultingfrom this is a
combineddiscontinuitymadeupof a slowshockandanRD.Wedemonstratedtheexistenceof
thiscoupleddiscontinuitywith hybridsimulations.Shortlyafterourprediction,thisnewtypeof
discontinuitywas confirmedobservationallyin the tail. Slow shocksor slow shock-like
discontinuitiesmayalsoformmoregenerallyin thevicinityof majorstructuresextendinginto the
lobe,suchasplasmoids.Takinga closerlook at the plasmoids,we foundthat simultaneous
reconnectionfrom more than one X-line leadsto a complicated"onion-shell"structureof
interpenetratingions (and associatedBy structure),which has recently beenconfirmedby
GEOTAILobservations.

Thedynamicsandstabilityof thenear-Earthtail areintimatelyrelatedto thesubstormonset.Asa
first stepin exploringthisconnection,we investigatedtheeffectof O÷ionsonthestabilityof the
tail. Sinceit is knownthationosphericoxygencanmakeupa largefractionof theplasma(with
increasingdensitiesaroundsubstormonset),oneof theoutstandingissueshasbeentheroleof O÷
in thesubstormprocess.Weshowedthattheircurvature-drift-generatedcurrentonlymildlyaffects
the tail field configurationandreconnectionrate,unlesstheO÷ beamparametersapproachthe
marginallimit for firehoseinstability.However,therearemanymorewaysin whichO÷cantake
partin substormprocessesthatremaintobeinvestigated.

Manyof theoutstandingquestionswithregardtosubstormonsetarerelatedto therespectiveroles
of near-Earthcurrentdisruptionmechanismsvs.NENL(near-Earthneutralline)reconnection,and
therole of ionosphericcoupling. To addresstheseissues,wehaveperformedthefirst 3-D ion
kineticsimulationsof thecombinedtearing(reconnection)andcross-tailinstabilitiesof thenear-
Earthtail, demonstratingtheirrespectiveionosphericsignatures.Theselarge-scale,non-periodic
inflow/outflowsimulationsallowusto studyboththenon-drivenanddrivenaspectsof substorms.
Similarto ourresultsfor themagnetopauseabove,we find thatthe near-Earthtail is unstableto
KH. Thesesimulationsallowusto analyzethedevelopmentof thecurrentdiversion,associated
field alignedcurrents,andtheir ionosphericsignatures.Plate2 showsa snapshotof the 3-D
currentsheet(leftpanel),its ionosphericsignature(toprightpanel),andanx-z cut demonstrating

the (asymmetric) current diversion around the reconnection region. In this work, we have
introduced ionospheric coupling by solving the ionospheric potential equation from the mapped

magnetospheric parallel current, and by mapping the electric field back to the near-Earth boundary
of the simulation. The significance of these types of simulations is that the crucial temporal

evolution of physical quantities can be directly compared to both in situ and ionospheric
observations, to help understand substorm dynamics and to distinguish between competing

substorm models.

The planned extension of this work is to refine the description of the ionospheric coupling and the
ring current, and to increase the simulation in all dimensions, such that the near and far tail are
both included at once.

Global Simulations

Recent advances in computer technologies have allowed us to perform simulations that stretch

from the upstream solar wind to the magnetotail regions. These simulations cover many aspects of
the solar wind - magnetosphere interaction simultaneously, and enable us to look at all structures

and boundary layers, and how they interact, as a whole. Our recent 2-D global hybrid simulations
of solar wind interaction with a dipole magnetic field exemplify this major breakthrough. Plate 3

shows the ion temperature as a function of X and Y at the end of the simulation run. As the labels,

in the figure indicate, these simulations are able to capture the magnetosphere in considerable

detail.
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Plate 3. An intensity plot of the ion teml_ralure as oblaincd from a 2-D global hybrid simulalion of solar wind inleracting with a dilx)Ic

field during soulhward IMF.

Although global in nature, these simulations have a cell size of one ion inertial length and

reproduce accurate kinetic physics on ion scales. As an example, the simulations reproduce the

familiar plasma characteristics and associated ion thermalization at the quasi-perpendicular (Ql)

shock. However, these simulations also produce new physics on ion scales. An example that has

escaped previous, local 1-D or 2-D simulations is the possibility of KH instability at the Ql portion

of the shock. Plate 4 shows the ensuing filamentation and break-up of the shock surface. In

simulations with the IMF mostly oriented in the dawn-dusk direction, a large velocity shear

develops between the solar wind and the near-shock sheath flow. This can be seen in the left panel

of Plate 4 that shows the y (northward/southward) component of velocity. This shear flow results

in the Kelvin-Helmholtz instability that in the nonlinear regime gives rise to the filamentation of

the shock and formation of a solitary band/filament, as evident in the right panel of Plate 4. The

field and plasma signatures within this band are consistent with that of fast magnetosonic shock.

However, except for a large diversion of the flow, the plasma behind the band has properties

similar to that of the solar wind until a secondary shock front is encountered. As a result, the

traversal of the shock filament and the secondary shock front resembles a multiple shock

encounter except for the flow diversion behind the filament. Although single spacecraft

measurements are capable of detecting (or may already have) the presence of such filamentation

by virtue of its flow diversion, multi-spacecraft measurements such as the upcoming CLUSTER II

mission are more suitable for detection of such structures.
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Plate 4. Intensity plots of ion density and Vy (northward velocity component) from a 2-D hybrid simulation of the curved bow

shock. Bow shock is unstable to the Kelvin-Helmholtz instability (KH). Early in the simulation, the KH gives rise to modulations of

the shock surface (left panel). As KH develops, part of the shock surface peels off. giving rise to a solitary structure as seen in the

lower part of the right panel.

We emphasize that the most compelling aspect of these global kinetic simulations is the fact

that the underlying physics down to ion temporal and spatial scales is correctly captured. This,

together with the fact that by the right choice of plasma parameters we can ensure that the

simulated plasmas have properties (e.g., density, flow velocity, temperature, and field strength)

similar to the solar wind and magnetospheric regions, facilitates a direct comparison of results

with spacecraft measurements. This is further illustrated in Plate 5. The top panel of Plate 5

shows an intensity plot of the total magnetic field strength with field lines superimposed on it

while the bottom two panels show magnetic field and plasma parameters for cuts along the

terminator and deep tail. Evidence for magnetic reconnection on the dayside can be inferred

from the field lines. Also, modulation of the magnetopause surface (light region) due to

multiple plasmoids can be seen. On the night side, both dipolar and highly stretched field lines

are present with the X-line having just moved out of the simulation domain on the right hand

boundary. The light region in the tail corresponds to the neutral sheet. The bottom two panels in

Plate 5 clearly demonstrate the capabilities of these simulations to account for both global as

well as local kinetic structure of various discontinuities and boundaries. For example, the cut

along the terminator shows field and plasma fluctuations in the upstream followed by a rather

broad and turbulent structure for the quasi-parallel shock. Further downstream, another

transition associated with the magnetopause and boundary layer can be seen. Note that this

layer is quite broad and considerably different from the subsolar magnetopause. This is due to

the fact that here the transition is from the magnetosheath to the plasma mantel whose

properties are similar to the magnetosheath and considerably different from the magnetospheric

plasma near the subsolar magnetopause. The outer tail cut shows plasma and field variations
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associated with traversal from the northern lobe through the plasmasheet boundary layer, central

plasma sheet, the southern boundary layer and the lobe. These variations are similar to the
modified Harris structure that has been observed recently in the magnetotail. Note that because of

the large-scale flow pattern in the tail, the plasma is moving towards the magnetotail (positive

Vx) even though the cut is made at the earth side of the X-line. This flow pattern reverses and
becomes earthward at X ~ 900 reaching its maximum value of - 400 km/s at the inner edge of the

plasma sheet (X ~ 600) where plasma begins to move along the dipolar field lines to both

southern and northern high latitude regions.

Physics of the Cusp

As part of our continuing study of the physical processes at the cusp, we have been working with
Dr. Shen-Wu Cheng of the University of Iowa. The purpose of this collaboration has been to test

the hypothesis that the high energy particles observed in the cusp have originated from the quasi-

parallel bow shock. Currently, two different explanations have been put forth for the origin of

high energy particles in the cusp. They could either come from the magnetosphere or as Dr.
Scudder has proposed, they could come from the quasi-parallel bow shock. The shape of the

power spectrum of these particles and its similarity with those in the quasi-parallel bow shock
region lend support to this latter explanation. However, to prove to establish the quasi-parallel

origin of these particles, two things must be shown. First, there should exist a magnetic
connection from the quasi-parallel bow shock to the cusp. Secondly, it must be shown that

particles can actually go from the quasi-parallel bow shock to the cusp. Using our global
simulations we have established that indeed the southern part of bow shock is magnetically

connected to the northern cusp. We are now in the process of determining the detailed mechanism

through which the particles transport from the bow shock to the cusp. We have selected an event
and have constructed simulation parameters similar to it. We have started a run using these

parameters and a larger simulation box in order to examine the details of the particle transport.

Our preliminary results are consistent with the conclusion that that the high energy particles in the

cusp are indeed coming from the quasi-parallel bow shock:

Core field Generation

Plasmoids/flux ropes have been observed both at Earth's magnetopause as well as in the

magnetotail. Magnetic field measurements of such structures often reveal that rather than a
minimum in field strength at their centers as expected from a simple O-type neutral line picture,

they exhibit a strong core field. To address this issue, we used two-dimensional (2-D) and 3-D

hybrid simulations to investigate the magnetic structure of reconnection layer in general and the
formation of the core field within plasmoids in particular. We showed that the reconnection layer

in the magnetotail is unstable to the fire hose instability. As a result, the region between the lobe

and the central plasma sheet is nearly at the marginal fire hose condition. We contrasted the

magnetic signatures of single and multiple X line geometries and showed that the interaction of

outflowing jets from neighboring X lines leads in general to a highly complex magnetic structure
within a plasmoid. We explained the large observed core fields in terms of Hall-generated

currents which can naturally lead to core field strengths that even exceed the ambient lobe field in

magnitude. Ion beta and the presence of a preexisting guide field are two important factors
controlling the Hall-generated fields. In particular, we showed that the presence of the small

ubiquitous cross-tail field component in the magnetotail can under certain conditions lead to a.
strong unipolar plasmoid core field. There exist significant differences between core fields

associated with plasmoids at the magnetopause and those in the tail. This is due to (1) high



plasmabeta in the magnetosheathand (2) the asymmetryin plasmadensity acrossthe
magnetopause.Theformerleadsto smallercorefieldsat themagnetopause,whereasthelatter
leadsto differencesin the polarityand structureof core fields within magnetopauseand
magnetotailplasmoids.

Wal_n Relation and RDs

We established an ongoing collaboration with J. D. Scudder at Iowa concerning rotational

discontinuities (RDs) in the solar wind and at the magnetopause. It has long been known that in
both cases the so-called Wal6n relation is not very well satisfied observationally; it is typically

and systematically off by about 30%. Recently, using POLAR observations, J. D. Scudder has
shown that the relation is very well satisfied if one does not use the ions to describe the plasma
motion in the Wal6n relation, but the electrons instead. One possibility that is currently being

tested observationally by J. D. Scudder is based on the fact that the surroundings of (both
observed and simulated) RDs always contain additional fluctuations with spectral components at

and below the ion inertial scale. Averaging over these in the derivation of the ion moments can

produce a systematical error in the sense that at this scale, the Hall term becomes important, and

it is really the electrons that follow the magnetic field more closely. We set up hybrid simulations
of RDs in which we can do evaluations similar to what is done with satellite instrument data. In

particular, the hybrid simulations allow us to distinguish between the electron and ion moments,
and thus to evaluate the Wal6n relation for the to species separately. We have setup a number of
runs of isolated RDs and the in collaboration with the Iowa group we have started to run the same

type of analysis that they perform on the spacecraft data. Our results show that averaging over ion
scale fluctuations can lead to deviations from the Walen relation. Both kinetic effects and the Hall

term are important in this process. This points to the fact that fluid theories are inadequate in

addressing the properties of RDs.

As demonstrated above, these simulations offer an unprecedented opportunity to investigate the

global magnetospheric physics on ion spatial and temporal scales. In spite of the wealth of new

physics that we have been able to uncover through these simulations, much remains to be done.
We look forward to the coming year to tackle many of the remaining magnetospheric issues that

are yet to be resolved.
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